41 research outputs found

    Self-similar approximants of the permeability in heterogeneous porous media from moment equation expansions

    Get PDF
    We use a mathematical technique, the self-similar functional renormalization, to construct formulas for the average conductivity that apply for large heterogeneity, based on perturbative expansions in powers of a small parameter, usually the log-variance σY2\sigma_{Y}^2 of the local conductivity. Using perturbation expansions up to third order and fourth order in σY2\sigma_{Y}^2 obtained from the moment equation approach, we construct the general functional dependence of the scalar hydraulic conductivity in the regime where σY2\sigma_{Y}^2 is of order 1 and larger than 1. Comparison with available numerical simulations show that the proposed method provides reasonable improvements over available expansion

    Self-Similar Crossover in Statistical Physics

    Full text link
    An analytical method is advanced for constructing interpolation formulae for complicated problems of statistical mechanics, in which just a few terms of asymptotic expansions are available. The method is based on the self-similar approximation theory, being its variant where control functions are defined from asymptotic crossover conditions. Several examples from statistical physics demonstrate that the suggested method results in rather simple and surprisingly accurate formulae.Comment: 1 file, 23 pages, LaTe

    Self-similar Approximants of the Permeability in Heterogeneous Porous Media from Moment Equation Expansions

    Full text link
    We use a mathematical technique, the self-similar functional renormalization, to construct formulas for the average conductivity that apply for large heterogeneity, based on perturbative expansions in powers of a small parameter, usually the log-variance σY2\sigma_Y^2 of the local conductivity. Using perturbation expansions up to third order and fourth order in σY2\sigma_Y^2 obtained from the moment equation approach, we construct the general functional dependence of the transport variables in the regime where σY2\sigma_Y^2 is of order 1 and larger than 1. Comparison with available numerical simulations give encouraging results and show that the proposed method provides significant improvements over available expansions.Comment: Latex, 14 pages + 5 ps figure

    Interactions in vivo between the Vif protein of HIV-1 and the precursor (Pr55GAG) of the virion nucleocapsid proteins

    Get PDF
    The abnormality of viral core structure seen in vif-defective HIV-1 grown in PBMCs has suggested a role for Vif in viral morphogenesis. Using an in vivo mammalian two-hybrid assay, the interaction between Vif and the precursor (Pr55GAG) of the virion nucleocapsid proteins has been analysed. This revealed the amino-terminal (aa 1–22) and central (aa 70–100) regions of Vif to be essential for its interaction with Pr55GAG, but deletion of the carboxy-terminal (aa 158–192) region of the protein had only a minor effect on its interaction. Initial deletion studies carried out on Pr55GAG showed that a 35-amino-acid region of the protein bridging the MA(p17)–CA(p24) junction was essential for its ability to interact with Vif. Site-directed mutagenesis of a conserved tryptophan (Trp21) near the amino terminus of Vif showed it to be important for the interaction with Pr55GAG. By contrast, mutagenesis of the highly conserved YLAL residues forming part of the BC-box motif, shown to be important in Vif promoting degradation of APOBEC3G/3F, had little or no effect on the Vif–Pr55GAG interaction

    Self-Similar Interpolation in Quantum Mechanics

    Full text link
    An approach is developed for constructing simple analytical formulae accurately approximating solutions to eigenvalue problems of quantum mechanics. This approach is based on self-similar approximation theory. In order to derive interpolation formulae valid in the whole range of parameters of considered physical quantities, the self-similar renormalization procedure is complimented here by boundary conditions which define control functions guaranteeing correct asymptotic behaviour in the vicinity of boundary points. To emphasize the generality of the approach, it is illustrated by different problems that are typical for quantum mechanics, such as anharmonic oscillators, double-well potentials, and quasiresonance models with quasistationary states. In addition, the nonlinear Schr\"odinger equation is considered, for which both eigenvalues and wave functions are constructed.Comment: 1 file, 30 pages, RevTex, no figure

    Pharmacological Aspects of Vipera xantina palestinae Venom

    Get PDF
    In Israel, Vipera xantina palestinae (V.x.p.) is the most common venomous snake, accounting for several hundred cases of envenomation in humans and domestic animals every year, with a mortality rate of 0.5 to 2%. In this review we will briefly address the research developments relevant to our present understanding of the structure and function of V.x.p. venom with emphasis on venom disintegrins. Venom proteomics indicated the presence of four families of pharmacologically active compounds: (i) neurotoxins; (ii) hemorrhagins; (iii) angioneurin growth factors; and (iv) different types of integrin inhibitors. Viperistatin, a α1β1selective KTS disintegrin and VP12, a α2β1 selective C-type lectin were discovered. These snake venom proteins represent promising tools for research and development of novel collagen receptor selective drugs. These discoveries are also relevant for future improvement of antivenom therapy towards V.x.p. envenomation

    Simian virus 40 vectors for pulmonary gene therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sepsis remains the leading cause of death in critically ill patients. One of the primary organs affected by sepsis is the lung, presenting as the Acute Respiratory Distress Syndrome (ARDS). Organ damage in sepsis involves an alteration in gene expression, making gene transfer a potential therapeutic modality. This work examines the feasibility of applying simian virus 40 (SV40) vectors for pulmonary gene therapy.</p> <p>Methods</p> <p>Sepsis-induced ARDS was established by cecal ligation double puncture (2CLP). SV40 vectors carrying the luciferase reporter gene (SV/<it>luc) </it>were administered intratracheally immediately after sepsis induction. Sham operated (SO) as well as 2CLP rats given intratracheal PBS or adenovirus expressing luciferase served as controls. Luc transduction was evaluated by <it>in vivo </it>light detection, immunoassay and luciferase mRNA detection by RT-PCR in tissue harvested from septic rats. Vector abundance and distribution into alveolar cells was evaluated using immunostaining for the SV40 VP1 capsid protein as well as by double staining for VP1 and for the surfactant protein C (proSP-C). Immunostaining for T-lymphocytes was used to evaluate the cellular immune response induced by the vector.</p> <p>Results</p> <p>Luc expression measured by <it>in vivo </it>light detection correlated with immunoassay from lung tissue harvested from the same rats. Moreover, our results showed vector presence in type II alveolar cells. The vector did not induce significant cellular immune response.</p> <p>Conclusion</p> <p>In the present study we have demonstrated efficient uptake and expression of an SV40 vector in the lungs of animals with sepsis-induced ARDS. These vectors appear to be capable of <it>in vivo </it>transduction of alveolar type II cells and may thus become a future therapeutic tool.</p

    Iterative Borel Summation with Self-Similar Iterated Roots

    No full text
    Borel summation is applied iteratively in conjunction with self-similar iterated roots. In general form, the iterative Borel summation is presented in the form of a multi-dimensional integral. It can be developed only numerically and is rarely used. Such a technique is developed in the current paper analytically and is shown to be more powerful than the original Borel summation. The self-similar nature of roots and their asymptotic scale invariance allow us to find critical indices and amplitudes directly and explicitly. The locations of poles remain the same with the uncontrolled self-similar Borel summation. The number of steps employed in the course of iterations is used as a continuous control parameter. To introduce control into the discrete version of the iterative Borel summation, instead of the exponential function, we use a stretched (compacted) exponential function. For the poles, considering inverse quantities is prescribed. The simplest scheme of the iterative Borel method, based on averaging over the one-step and two-step Borel iterations, works well when lower and upper bounds are established by making those steps. In the situations when only a one-sided bound is found, the iterative Borel summation with the number of iterations employed as the control works best by extrapolating beyond the bound. Several key examples from condensed matter physics are considered. Iterative application of Borel summation leads to an improvement compared with a conventional, single-step application of the Borel summation
    corecore